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SUMMARY
In multicellular organisms, cell types must be produced and maintained in appropriate proportions. One way
this is achieved is through committed progenitor cells or extrinsic interactions that produce specific patterns
of descendant cell types on lineage trees. However, cell fate commitment is probabilistic in most contexts,
making it difficult to infer these dynamics and understand how they establish overall cell type proportions.
Here, we introduce Lineage Motif Analysis (LMA), a method that recursively identifies statistically overrepre-
sented patterns of cell fates on lineage trees as potential signatures of committed progenitor states or
extrinsic interactions. Applying LMA to published datasets reveals spatial and temporal organization of
cell fate commitment in zebrafish and rat retina and early mouse embryonic development. Comparative anal-
ysis of vertebrate species suggests that lineage motifs facilitate adaptive evolutionary variation of retinal cell
type proportions. LMA thus provides insight into complex developmental processes by decomposing them
into simpler underlying modules.
INTRODUCTION

Most tissues comprise multiple specialized cell types that

appear in appropriate proportions to support proper tissue-level

functions. In many cases, cell type proportions vary spatially

within the tissue. For example, the center of the primate retina

is cone-dense, allowing for high visual acuity, while the periph-

ery is rod-dense, enabling greater sensitivity in low light condi-

tions.1 Cell type proportions also vary between species. For

instance, the ratio of rod and cone photoreceptors varies de-

pending on the visual needs associated with the lifestyle of

each species.2 Tissue development thus faces the fundamental

challenges of (1) generating cell types in correct proportions,

and (2) facilitating spatial and evolutionary changes in those

proportions.3,4

One prevalent mechanism for specifying cell type propor-

tions occurs through regulating cell fate differentiation. As pro-

genitor cells undergo successive rounds of cell division, they

progressively become restricted in their fate potential, eventu-

ally committing to terminal cell fates. This process can be

described in terms of a collection of cell states and the rates

at which cells in each state transition to other states, i.e., a

cell state transition map5 (Figures 1A and 1B). In some cases,

like the nematode C. elegans, cell state transitions are deter-

ministic, producing a stereotyped lineage tree in all individuals.6

However, in most other organisms, one cannot infer a quantita-

tive cell state transition map from any single lineage tree due to
812 Developmental Cell 59, 812–826, March 25, 2024 ª 2024 The Au
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variability. For example, in the mammalian retina, individual

progenitor cells can give rise to a wide distribution of cell

numbers and types with no apparent fixed ratios between

different types. This observation prompted investigators to

initially suggest a stochastic view of cell fate determination.7,8

However, other studies of terminally dividing progenitors with

particular expression patterns provided evidence for consistent

cell-intrinsic biases in cell fate decisions.9–15 These biases also

appear in earlier, non-terminal divisions.11,16–22 Cell state tran-

sition dynamics can also integrate extrinsic signals, develop-

mental time, and stochastic ‘‘noise’’ with internal progenitor

states.23,24 Thus, even in well-studied systems such as the

retina, it remains a major challenge to quantitatively elucidate

cell state transition maps.

Different cell state transition maps can generate distinct dis-

tributions of cell fates on lineage trees. One simple transition

map comprises a multipotent progenitor that can directly and

probabilistically differentiate into multiple terminal fates (Fig-

ure 1A). A system employing such a direct, memoryless transi-

tion map would not exhibit fate correlations between related

cells. Alternatively, a more complex transition map could

involve the probabilistic generation of various types of

committed progenitors, each predetermined to give rise to an

invariant set of descendant cell types (Figure 1B). In this

case, each type of progenitor would produce a characteristic

distribution of descendant cell fates, introducing fate correla-

tions on lineage trees. These fate correlations represent lineage
thors. Published by Elsevier Inc.
commons.org/licenses/by/4.0/).
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Figure 1. Cell type proportions can be controlled using partially stochastic cell state transitionmaps that specify defined groups of cell types

as motifs

(A) A completely stochastic cell state transition map where a multipotent progenitor can self-renew or give rise to different fates in amemoryless manner. Lineage

trees (only triplets shown) generated under this transition map would not exhibit fate correlations between related cells.

(B) A partially stochastic cell state transition map where a multipotent progenitor can self-renew or give rise to different types of committed progenitors. The

committed progenitors differentiate, and each gives rise to a defined set of cell types (motif A or B). Lineage trees generated under this transition map would

exhibit fate correlations between related cells, representative of the committed progenitors present within the transition map.

(C) In tissues that specify cell types solely by modulating the frequency of motif A and B, variation in cell type proportions is capped such that a cell type can be at

most twice as abundant as the other type.
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motifs that reflect otherwise hidden progenitor states. Further-

more, based on what motifs are used to specify cell types in

developing tissues, this could in turn limit variation in overall

cell type proportions (Figure 1C).

Recently, new methods have begun to allow for lineage tree

reconstruction at scale. Long-term in toto live imaging allows

direct tracking of dividing progenitor cells.25 Additionally, a

new generation of engineered lineage reconstruction systems

has emerged.26–32 These advances provoke the question of

how fully resolved lineage trees with endpoint cell fates can be

used to infer cell state transition maps.

To address this challenge, we introduce Lineage Motif Anal-

ysis (LMA), a computational approach for inferring statistically

overrepresented patterns of cell fates on lineage trees. LMA

is based on the principle of motif detection, which has been
used to identify the building blocks of complex regulatory

networks,33 DNA sequences,34,35 and other biological fea-

tures,36,37 but has not to our knowledge been applied to under-

stand cell fate differentiation. As a ‘‘bottom-up,’’ data-driven

approach, LMA does not require specific assumptions about

underlying molecular mechanisms and can be applied to

diverse systems for which sufficient cell lineage information is

available. Biologically, motifs could be generated by progeni-

tors intrinsically programmed to autonomously give rise to spe-

cific patterns of descendant cell fates. They could also reflect

more complex cell state transition maps involving extrinsic

cues and cell-cell signaling that generate correlated cell fate

patterns on lineage trees.

Here, we first define LMA and demonstrate how accurately

it performs using simulated datasets. We then identify lineage
Developmental Cell 59, 812–826, March 25, 2024 813
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motifs in published zebrafish and rat retina development data-

sets, as well as a dataset of early mouse embryonic develop-

ment. These results reveal spatial and temporal differences in

cell fate determination across different progenitors. Further,

the appearance of shared retinal motifs across different spe-

cies suggests that motifs may be evolutionarily conserved fea-

tures of development. Computationally, we explore how

various dataset characteristics affect motif identification.

We demonstrate how the use of lineage motifs facilitates

adaptive variation in retinal cell type composition and show

that this theory is consistent with known variation in vertebrate

retinal cell type proportions. Together, these results support

LMA as a broadly useful tool to understand cell fate

differentiation.
DESIGN

A previous study analyzed sister cell fate correlations by

comparing the frequency of two-cell clones with that pre-

dicted by random association of cell types given their

observed proportions.24 Another study analyzed triplet fate

correlations by comparing the frequency of triplet patterns

with that observed in simulated lineage trees using a stochas-

tic model where each starting progenitor can self-renew or

differentiate into all possible cell types within the dataset un-

der a set of probabilities.38 These studies provide evidence

for fate correlations between related cells. However, a frame-

work that can be recursively applied to any lineage tree data-

set to systematically identify lineage motifs of varying size re-

mains lacking.

We first simulated a dataset of lineage trees with two termi-

nal cell fates (Figure 2A; STAR Methods). We then applied

LMA to analyze the tree dataset, starting by enumerating all

possible doublet and triplet cell fate patterns (with varying

fate composition and order of fate differentiation) and counting

the number of times each occurred within the observed trees

(Figure 2B). Then, we compared these counts with those ex-

pected in a ‘‘null’’ model without fate correlations. This can

be done by randomly shuffling the cell fates at the leaves of

the lineage trees to generate resampled trees, followed

by counting the number of times each pattern occurs

across the resampled trees. We then repeat the resampling

process many times. Since the arrangement of cell types

in the resampled trees are randomized, the average of

counts obtained within the null model represents the

expected count if there is no relationship between lineage

and cell fate. To identify larger motifs that span more than

one cell division, the resampling was done in a manner that

preserves the frequency of sub-patterns within each pattern

(STAR Methods).

For each pattern, we computed a Z score to quantify the de-

gree of over-representation, as well as a false discovery rate

(FDR)-adjusted p value39,40 to measure significance (STAR

Methods). In the identified lineage motifs, higher over-represen-

tation can be interpreted as stronger intrinsic commitment of a

given progenitor toward generating a particular fate pattern.

Alternatively, it could represent the strength of extrinsic interac-

tion that generates a particular fate pattern. Finally, anti-motifs,
814 Developmental Cell 59, 812–826, March 25, 2024
defined as patterns that are underrepresented in the observed

trees, were identified using the same approach.

LMA is distinct from a related approach termed Kin Correlation

Analysis (KCA). KCA infers cell state transition dynamics

from lineage trees and endpoint cell state datasets but is mainly

applicable to systems governed by Markovian dynamics,

in which sister cell transitions are independent of one

another.41,42

To demonstrate that LMA can recover lineage motifs that

reflect progenitor states in cell state transition maps, we simu-

lated lineage tree datasets using either a competence progres-

sion model (Figure 3A) or a binary fate model (Figure S1A). We

used differentiation probabilities that generate roughly equal

cell type proportions in the overall dataset (Figures 3B and

S1B). Applying LMA to both datasets, we found that the resulting

motifs reflected the structure of the generative model and

captured multiple levels of progenitor commitment over time.

For example, in trees generated using a competence progres-

sion model (Figures S2A–S2C), where cell fates A through F

are generated progressively over time, only symmetric doublet

patterns, such as (F,F), were statistically overrepresented within

all possible doublet patterns (Figure 3C).

We next analyzed triplet patterns, in which a single progeni-

tor divides to produce a terminal cell, X, and a second progen-

itor cell that divides once more to produce a doublet of terminal

cells, Y and Z, producing a triplet denoted as (X,(Y,Z)). Only

triplet patterns including two sequential levels of progenitor

commitment, such as (E,(F,F)), were significantly overrepre-

sented (Figure 3D).

LMA can be scaled up to analyze larger asymmetric patterns.

Given a reasonable number of trees (500 total), the motifs suc-

cessfully captured up to 5 levels of the competence progression

model. Similar to the triplet results, the significant higher-order

motifs exclusively involved sequentially generated cell fates. As

motif size grows larger, the size of the dataset required for detec-

tion also increases (Figure 3E). Together, these results confirm

that LMA can be used to recursively identify lineage motifs in

large patterns.

We also analyzed trees generated using a binary fate model in

which progenitors make binary choices which restrict their fate

potential over time (Figures S2D–S2G). The doublet and quartet

motifs reflect the structure of the generative model as expected

(Figures S1C and S1D). However, no octet patterns were signif-

icantly over- or underrepresented (Figures S1E and S1F). Taken

together, these results indicate that LMA is capable of recur-

sively identifying lineage motifs of multiple sizes in different

models of development and is especially powerful when applied

to the competence progression dynamics, likely due to the lower

number of possible patterns per level of progenitor commitment.

Having demonstrated that LMA can recover motifs in lineage

trees generated using an intrinsic program, we next sought to

demonstrate that LMA could do so in trees generated using

an extrinsic program. More specifically, we considered a

simplified model of the classic developmental mechanism of

lateral inhibition, in which cells of one fate inhibit similar fates

in their neighbors43–45 (Figures S3A–S3C). Our model assumes

a two-dimensional grid of progenitors, which self-renew or

differentiate into two cell fates, A or B, each of which inhibits

differentiation of its neighbors into its own fate. The inhibitory
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obtain a resampled set of trees with no fate correlations. This process is then repeated across many resamples. To identify the higher-order motifs that span
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approximately equal to the expected count if there were no fate correlations. Finally, overrepresented patterns are classified as lineage motifs, which represent

possible committed progenitors or extrinsic interactions.
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effects of multiple neighbors are assumed to combine addi-

tively (Figure S3B). As expected, applying LMA to a null dataset

generated without lateral inhibition revealed no significantly

overrepresented doublet patterns (Figure S3D). By contrast,

symmetric sister doublets (A,A) and (B,B) were underrepre-

sented in the lateral inhibition model, whereas the asymmetric

sister doublet (A,B) was overrepresented. These results show

that extrinsic developmental programs can generate signatures
of fate correlation on lineage trees, which can be reliably de-

tected using LMA.

To enable the identification of lineage motifs across diverse

developmental contexts, we created a Python package, termed

‘‘linmo.’’ The package is available on a GitHub repository

(https://github.com/labowitz/linmo), which includes supporting

documentation and tutorials for processing the following lineage

tree datasets analyzed here.
Developmental Cell 59, 812–826, March 25, 2024 815
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Figure 3. Lineage motifs reflect sequential progenitor states in a competence progression model

(A) Lineage trees were simulated using a competence progression model.

(B) Cell type proportions in 500 simulated lineage trees.

(C) Deviation score for doublet patterns. Null Z scores were calculated by comparing a random resample dataset with the rest of the resample datasets. 10

datasets containing 500 simulated trees each were used, with the standard deviation across the datasets plotted as error bars (** and *** represent adjusted

p value < 0.005 and < 0.0005, respectively).

(D) Deviation score for triplet patterns.

(E) Deviation score for select patterns that reflect sequential differentiation of cell types using datasets of varying size. Shading indicates 95% confidence interval

across 10 datasets for each point.

See also Figures S1–S3.
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RESULTS

LMA reveals spatial organization of zebrafish retina
development
Retina development provides a well-studied example of cell

fate diversification. It involves generation of a conserved set

of terminal cell fates across diverse vertebrate species. At

the same time, it also exhibits substantial spatial and inter-

species variation in cell type proportions,1 making it an ideal

target tissue for LMA. Therefore, we examined a zebrafish

retina development dataset spanning 32 to 72 h post fertiliza-

tion (hpf),46 during which progenitors terminally differentiate to

form major neuronal and glial cell types, including ganglion

(G), amacrine (A), bipolar (B), photoreceptor (P), horizontal

(H), and M€uller glia (M) (Figure 4A). He et al. used time-lapse

confocal microscopy in reporter zebrafish lines to track every

cell division event for 60 retinal progenitors spanning the

nasal-temporal axis. Their data supported previous work

showing that a wave of differentiation starts in the nasal region

and gradually progresses to the temporal region.47,48 Clonal

cell type composition was generally observed to be variable,

with weak fate correlations between related cells. A key

exception, however, was the frequent appearance of symmet-

ric terminal pairs of photoreceptor, bipolar, and horizon-

tal cells.

We sought to identify lineage motifs and characterize how

their frequency varies across spatial regions in the zebrafish

retina. Therefore, we partitioned lineage trees based on the

progenitor spatial location and applied LMA, beginning with

doublet patterns, representing the terminal cell division. We

found that the (H,H), (B,B), and (P,P) doublet patterns had

significantly higher observed counts in the lineage trees,

compared with the distribution of counts across resamples

and expected count, in a similar manner across the three

spatial regions (Figures 4B–4D). Therefore, these doublet pat-

terns are statistically overrepresented in the dataset and repre-

sent lineage motifs (Figure 4E). The exception was a lack of

(H,H) and (B,B) doublets in the nasal region, likely because

those cell types were only present at very low levels in this re-

gion (Figures 4D and 4E). These results were consistent with

key findings from He et al., while extending the analysis to

assess regional variation.

LMA also found motifs not previously identified in the He et al.

study and revealed how their frequency varies across space. For

example, even though amacrine and bipolar cells appear at

similar frequencies across all three retinal regions, the (A,B)

doublet was specifically overrepresented in the nasal region

(Figures 4D and 4E). Also, doublets comprising one P cell and

all other cell types were generally underrepresented across all

regions, constituting anti-motifs. We also searched for higher-or-

der motifs that involve multiple cell divisions but found that no

patterns were significantly over- or underrepresented, possibly

due to the limited size of the dataset (Figure S4). Overall, the

observed motif profile suggests that amacrine and bipolar cells

frequently share a common progenitor at the terminal cell divi-

sion, specifically in the nasal region of the zebrafish retina,

whereas photoreceptor and non-photoreceptor cells do not

share a common progenitor at the terminal cell division in all

regions.
Shared retinal lineage motifs across species suggest
conservation of cell fate determination
Are retinal lineage motifs conserved between different species?

To address this question, we analyzed a dataset of post-natal rat

retinal progenitor cells grown in vitro at clonal density, consisting

of 129 lineage trees with at least 3 cells.38 During post-natal

development, rat retinal progenitor cells gave rise to mostly

rod cells (R), some bipolar and amacrine cells (respectively,

B and A), and few M€uller glia (M) (Figure 5A). In this work, the au-

thors showed that a stochasticmodel based on independent fate

decisions could explain the observed frequencies of most triplet

patterns. However, some triplets may be generated by fate-

committed progenitors that give rise to sets of correlated

cell fates.

Applying LMA to this rat retina dataset confirmed some of

these conclusions, such as over-representation of (B,(A,B)) trip-

lets (Figures 5C and 5E). However, it also revealed additional fea-

tures of rat retinal development. For example, using LMA, we

found that (A,B), (B,M), and (A,A) doublets were overrepre-

sented, whereas (B,R) doublets were underrepresented

(Figures 5B and 5D). Correcting for sub-pattern frequencies in

the triplet analysis revealed that the apparent over-representa-

tion of the (R,(A,A)) triplet in the previous study38 could be entirely

explained by the (A,A) doublet motif frequency. This highlights

the importance of the recursive nature of LMA.

Because this dataset excluded two-cell lineages, this could

potentially introduce biases in three-cell motifs. Therefore, we

analyzed cell type proportions in triplets and compared this

with those across all other cells (Table S1). We found that there

are no obvious differences in cell type proportions between

triplet and non-triplet populations, suggesting that the lack of

two-cell lineages in the dataset does not substantially bias the

triplet motifs detected here.

We next compared the motif profile between zebrafish and rat

retina. Because the time period analyzed in these datasets is

different and involves the generation of different cell types, we

limited this analysis specifically to cell types that are shared be-

tween the analyzed datasets (i.e., amacrine, bipolar, and M€uller

glia). Notably, the (A,B) and (A,A) motifs are observed in both

species, suggesting that the committed progenitors that these

motifs possibly represent are at least partially evolutionarily

conserved. In contrast, the (B,B) motif appears specifically in

the zebrafish retina, whereas the (B,M) motif appears specifically

in the rat retina. Overall, these data suggest that cell fate alloca-

tion in retina across species can occur in a biased and evolution-

arily conserved manner, in which amacrine and bipolar cells

share a common progenitor at the terminal cell division. At the

same time, other aspects of cell fate differentiation may be

more species-specific. For example, bipolar and M€uller glia

tend to share a common progenitor in rat, but not zebrafish,

retina at the terminal cell division. More generally, these results

provide a case example for how LMA can be used to assess

the evolution of cell fate differentiation.

Computational simulations reveal how various dataset
characteristics affect motif identification
Towhat degree the limited size of available lineage tree datasets,

coupled with sampling variation, affects the accuracy of motif

identification is unclear. Therefore, we simulated lineage tree
Developmental Cell 59, 812–826, March 25, 2024 817
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Figure 4. Doublet lineage motifs in zebrafish retina development show spatial organization of fate commitment

(A) Schematic of cell type organization in the zebrafish retina.

(B) Counts for doublet patterns in the observed zebrafish retina trees from He et al.46 in the temporal region and across 10,000 resamples (* and ** represent

adjusted p value < 0.05 and < 0.005, respectively). The expected count was calculated analytically (STAR Methods).

(C) Counts for doublet patterns in the middle region of zebrafish retina and across 10,000 resamples.

(D) Counts for doublet patterns in the nasal region of zebrafish retina and across 10,000 resamples.

(E) Deviation score for doublet patterns in the temporal, middle, and nasal region. Doublet patterns with an observed and expected count of 0 were omitted from

the analysis.

See also Figure S4.
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Figure 5. Doublet and triplet lineage motifs reveal fate commitment patterns in rat retina development

(A) Schematic of cell type organization in the rat retina.

(B) Counts for doublet patterns in the observed lineage trees from Gomes et al.38 and across 10,000 resamples (* and ** represent adjusted p value < 0.05

and < 0.005 respectively). The expected count was calculated analytically (STAR Methods).

(C) Counts for triplet patterns in the observed lineage trees and across 10,000 resamples.

(legend continued on next page)
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datasets using a stochastic model, using set division and fate

probabilities based on the Gomes et al. dataset (Figure S5A),

while varying dataset size. We also added varying levels of sister

fate correlation, quantified as conditional probabilities, into the

model. For example, the conditional probability of a rod cell

also having a rod sister, P(R sister | R), would be the same as

the overall frequency of rod cells, P(R), if no sister fate correla-

tions were present. However, this conditional probability could

be increased or decreased to reflect sister fate correlation or

anti-correlation, respectively. To further explore how differences

in absolute cell type frequency impact motif identification, we al-

lowed sister fate correlations for either rod or M€uller glia fates,

which are present at 75% or 3%, respectively.

Analysis of the simulated lineage tree datasets revealed

several conclusions. First, nomotifs were detected when lineage

trees were generated without sister fate correlations, across all

tested dataset sizes (Figures S5B and S5C). This indicates that

our thresholds for significance are stringent and ensures the

absence of false positive motifs. Second, fate correlations are

more strongly detected in larger datasets (Figures S5D and

S5E). Conversely, they often go undetected within small data-

sets even if sister cell fates are completely correlated or anti-

correlated. This suggests that analysis of small datasets is likely

to be affected by high false-negative rates. Third, fate correla-

tions are more strongly detected when the conditional probabil-

ity deviates further from overall cell type frequency (Figures S5D

andS5E). Fourth, fate correlations aremore strongly detected for

more abundant cell types. Overall, this analysis suggests that the

fate correlations detected in both zebrafish and rat retina were

very strong, since those datasets were relatively small (60 and

129 trees, respectively). However, there may also be weak fate

correlations that were not detected asmotifs due to limited data-

set size.

LMA reveals temporal differences in cell commitment
during early mouse development
Early embryonic development features conserved cell types

across mammals and spatially restricted cell fate specification,

making it an ideal system to apply LMA. We therefore used

LMA to analyze a dataset of earlymouse embryo development.49

In a previous study, Morris et al. used time-lapse confocal micro-

scopy to trace individual progenitor cells starting at the 8- to

16-cell division within 20 mouse blastocysts until their final fate

is known at the late blastocyst stage (�E4.5). Beginning at the

16-cell stage, progenitors can either be located inside, contrib-

uting to the inner cell mass, or be located outside along the pe-

riphery (Figure 6A). (For shorthand, we will refer to the progeni-

tors at the 16-cell stage simply as ‘‘inside’’ and ‘‘outside’’

progenitors.) During the next two rounds of cell divisions, outside

progenitors can become internalized, adding to the inner cell

mass, or continue to remain outside, eventually differentiating

into trophectoderm (T). Cells within the inner cell mass either un-

dergo apoptosis (A) or further differentiate into either epiblast

(E) or primitive endoderm (P) fates. The authors found that inside
(D) Deviation score for doublet patterns in the observed lineage trees. Null Z score

resample datasets.

(E) Deviation score for triplet patterns in the observed lineage trees.

See also Figure S5 and Table S1.
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progenitors are biased to give rise to epiblast, whereas outside

progenitors that internalize later are biased to give rise to primi-

tive endoderm. However, it remained unclear whether individual

progenitors give rise to sets of correlated cell fates in the final few

divisions prior to fate assignment.

We therefore partitioned lineage trees into those generated

from inside or outside progenitors and applied LMA to both

sets. We found that most doublet patterns (90%) within both

types of progenitors are either motifs or anti-motifs (Figure S6).

For example, symmetric sister pairs such as (P,P), (E,E), and

the apoptotic doublet (A,A) were overrepresented among de-

scendants of both inside and outside progenitors. (T,T) was

also overrepresented among outside progenitors (Figure S6A).

These results suggest that by E4.5, most cells have already

committed to one of the three lineages before the previous cell

division and therefore produce symmetric doublets. We also

observed doublet motifs comprised multiple cell types, such

as (A,P), (A,E), and (E,P), which were overrepresented in trees

from outside progenitors while underrepresented in trees from

inside progenitors. Trophectoderm, unlike the other cell fates,

was part of all anti-motifs among outside progenitors. Overall,

the weaker motif signatures for inside progenitors suggest less

commitment compared with the strong, and usually symmetric,

doublet motifs among the descendants of the outside progenitor

cells (Figure S6C).

Analyzing higher-order motifs among outside progenitors, we

strikingly observed both triplet motifs with multiple cell fates,

such as (A,(P,P)) and (T,(A,P)), and the homogeneous triplet motif

(P,(P,P)), suggesting the existence of committed progenitors at

least two generations earlier (Figure 6B). In contrast, all triplet

patterns for inside progenitors did not significantly deviate

from null expectations, suggesting that they remain uncommit-

ted toward defined fates (Figure 6C). Taken together, these re-

sults suggest that some outside progenitors may commit to

give rise to defined groups of cell types at least two cell divisions

before blastocyst formation, while inside progenitors remain

plastic and uncommitted toward certain fates (Figure 6D).

Lineage motifs facilitate adaptive variation in cell type
frequencies
The fitness landscape over cell type frequency space could in

principle have peaks of high fitness, plateaus of relatively con-

stant fitness, or valleys of low fitness. Inspired by the concept

of Pareto optimality in evolutionary trade-offs,3,4,50 we asked

whether it is possible to structure the cell state transition map

in such a way that allows cell type frequencies to disproportion-

ately populate the high fitness, or more adaptive, regimes. We

reasoned that lineage motifs could address this problem. Math-

ematically, lineage motifs represent a linear transformation from

a set of motif frequencies to a set of cell type frequencies. If most

cell fate decisions resulted in generation of cell types as motifs,

then a developing tissue could indirectly control the frequencies

of individual cell types by specifying the frequency of each motif

(Figure 1C).
s were calculated by comparing a random resample dataset with the rest of the
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See also Figure S6.
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More precisely, we can describe the conversion frommotif fre-

quencies to cell type distributions as a linear transformation:

zðsÞ = X3 yðsÞ+ eðsÞ. Here, zðsÞ is a vector whose components

represent the counts of each cell type in position/species s, X is a

non-negative integer matrix describing how many cells of each

type (rows) are produced by each motif (columns), yðsÞ denotes
the motif frequencies in position/species s, and eðsÞ represents
the number of additional cells of each type in position/species

s that cannot be explained through the motifs (Figure 7A).

To understand how motifs constrain cell type frequencies, we

first constructed a set of hypothetical motif matrices X0, X1, X2,

each reflecting a different motif structure. X0 is a diagonal matrix

representing the null model in which each column trivially corre-

sponds to a single cell type. In contrast, X1 and X2 contain
Developmental Cell 59, 812–826, March 25, 2024 821
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exclusively doublet or triplet motifs, respectively, where multiple

cell types are generated together (Figure 7B). For each motif

matrix, we simulated datasets by randomly choosing fre-

quencies for each of the motifs present within each matrix

(STAR Methods). For simplicity, we initially assumed e= 0

and constrained cell type frequencies to sum to a constant,
P

i

zi = const, to reflect the limited total capacity of the tissue.

We then analyzed the range of cell type distributions produced

by each matrix. In this framework, each randomly chosen y(s)

would generate a particular z(s), which corresponds to one indi-

vidual with a particular set of cell type frequencies. Under the null

model, cell type frequencies spanned the full space, as ex-

pected. By contrast, the other two models restricted cell type

frequencies to limited subspaces.

Although motifs can constrain cell type distributions in gen-

eral, it remained unclear whether the specific motifs observed

in the rat retina dataset would be consistent with the distributions

of retinal cell types independently observed in different species.

Addressing this question requires (1) defining the motif-acces-

sible space of cell type frequencies permitted by the observed

rat retina motifs, and (2) determining whether independently

measured retinal cell type proportions from other vertebrate spe-

cies lie within that space.

Todefine themotif-accessible frequency space,wefirst need to

determine the lower and upper bounds for cell type frequencies.

We set the lower bounds at e3, the cell type counts for all cells in

the rat retina dataset born outside of a motif (STARMethods; Fig-

ure S7A). We set the upper bounds by constraining the total num-

ber of cells to be the same as in the rat retina dataset,
P

iðz3Þi =

const. Using these constraints, we simulated datasets containing

randomly chosen frequencies for each of the observed rat retina

motifs inX3, or as a control, the nullmodel,X0. Themotifmodel ac-

cessed only a subset of the space of type proportions spanned by

the null model (Figure 7C). Within this subspace, the motif model

showedhigher density of fate distributions corresponding tomod-

erate levels of both amacrine and bipolar cells and low levels of

M€uller glia. Bipolar cells and M€uller glia exhibited a reduced

maximum proportion relative to the null model, consistent with

the observation that both of these cell types are generated with

other cell types in the rat retina motifs.

We compared the datasets generated using the motif or null

model with independent measurements of retinal cell type pro-

portions across multiple vertebrate species.2,51 Strikingly, this

analysis revealed that all of the independently measured fate dis-

tributions of vertebrate retina lie within, or very close to, the sub-

space accessed by the motif model. To understand how the

structure of the motif matrix impacts the resulting cell type distri-

butions, we repeated this analysis omitting the (A,A) motif from

the motif matrix X3 (Figure S7B). This resulted in a smaller sub-

space achieved by the motif model, specifically lowering the

maximum proportion of A cells from 62.8% to 46.0% (Fig-
Figure 7. Motifs can facilitate optimal variation in cell type frequencies

(A) The zðsÞ=X � yðsÞ+ eðsÞ matrix equation describes the linear transformation f

(B) Cell type distributions were simulated by randomly varying the frequencies o

(C) Cell type distributions were simulated using a null model (X0) or the empirical

measured cell type proportions of mouse, rabbit, monkey, and chick retinas from

See also Figure S7.
ure S7C). This perturbed model failed to capture the empirical

cell type distributions, indicating that the (A,A) motif is required

to explain variation in cell type proportions across vertebrate

retina. Taken together, these results are consistent with the

notion that motifs identified in lineage trees of rat retina could

facilitate evolutionary variation in retinal cell type proportions

across vertebrates. They further show that the range of cell

type proportion space achieved using the motif model can be

expanded or constrained by respectively increasing or

decreasing the number of different motifs in the model.
DISCUSSION

Producing cell types in optimal ratios is essential for tissue func-

tion. In many contexts, these proportions are established during

development, when intrinsically committed progenitors or

extrinsic interactions generate sets of terminal cell types.

Increasing recent attention to the role of lineage in develop-

ment52 and the emergence of new methods for reconstructing

lineage trees53,54 provoke the question of how one can infer

committed progenitors or extrinsic interactions based on the

arrangement of descendant cell fates on lineage trees.

In this work, we introduce a general computational approach,

LMA, based on statistical resampling of lineage trees. Using

simulations, we demonstrated that LMA can be recursively

applied to uncover fate correlations in large patterns that span

multiple cell divisions. By applying this framework to three bio-

logical datasets, we identified fate correlations, some of which

validate known fate patterns. In the retina, motifs can recur

across space, or appear specifically in different tissue regions.

The presence of shared motifs across zebrafish and rat retina

suggests evolutionary conservation of retinal cell fate determi-

nation. In early mouse development, inside progenitors at the

16-cell stage appear plastic and uncommitted toward certain

fates compared with outside progenitors, when analyzing their

last two cell divisions before blastocyst formation. Finally, we

showed that the rat retina motifs, if utilized in different fre-

quencies, could explain variation in cell type frequencies across

several vertebrate species. Lineage motifs thus provide a useful

and biologically meaningful lens through which we can analyze

cell fate differentiation.

Lineage motifs could be regarded simply as the consequence

of a differentiation process that requires the cells to pass through

intermediate states of partial fate commitment. However, this

explanation still leaves open the question of why certain commit-

ment states have been selected for during evolution. One poten-

tial answer is that lineage motifs play functional roles in control-

ling cell type distributions. Developing organisms could use

various regulatory strategies including intrinsic transcription fac-

tors or extrinsic signals as ‘‘knobs’’ to modulate motif fre-

quencies. Since lineage motifs represent groups of cell types
between species

rom motif frequencies to cell type distributions.

f motifs using three example motif matrices (X0, X1, X2).

motif matrix based on the rat retina motifs (X3) in Figure 5. The independently

Masland2 and Yamagata et al.51 were overlaid on the ternary plot.
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produced in fixed stoichiometric ratios, this mechanism could

restrict variation of cell type proportions during development or

evolution to physiologically adaptive regimes. In the future, we

anticipate greater availability of high-quality lineage datasets,

which should allow more complete tabulation of motifs across

different tissue contexts. These data should thus enable more

stringent tests of the model proposed here.

A second potential role for lineage motifs could be to create

spatially localized neighborhoods of interacting cell types to

implement specific functions. In the context of the retina, partic-

ular types of interneurons must be synaptically connected. For

example, in crossover inhibition, OFF bipolar cells receive input

from ON amacrine cells, which are depolarized by ON bipolar

cells at light onset.55 A neural circuit of these cell types in close

spatial proximity could be ensured by regulating the generation

of these cell types through a lineage motif, such as the

(B,(A,B)) motif observed in the rat retina dataset (Figure 5E).

Consistent with this hypothesis, recent work has shown that

specific synapses develop preferentially among sister excitatory

neurons in the mouse neocortex.56

Lineage motifs can be compared with other methods for

analyzing cell fate differentiation, such as pseudotime, where

single cells are densely profiled throughout time to obtain a

population-level branching continuum of cell states.53 A previ-

ous study using pseudotime inference suggested that molecu-

larly defined subpopulations of retinal progenitors give rise to

different sets of cell types.21 In particular, neurogenic early

stage progenitors give rise to ganglion, amacrine, and horizon-

tal cells, Otx2+ late-stage progenitors give rise to bipolar and

rod cells, and other late-stage progenitors give rise to M€uller

glia. However, in our analysis of both the zebrafish and rat

retina, we observe progenitors that are biased to form a sister

pair of one amacrine and one bipolar cell. In the rat retina, we

also observe progenitors that are biased to form a sister pair of

one bipolar cell and one M€uller glia. Therefore, individual pro-

genitors during development can generate lineage patterns

that deviate from the population-level trajectories inferred using

pseudotime.57 In future work, pseudotime trajectories could be

refined by using dynamic information learned through lineage

motifs.

Looking forward, LMA should be especially useful for contexts

that have systematic spatial or cross-species variation in cell

type composition. Deeper tree reconstructions could enable

the analysis of developmental hyper-motifs, representing higher

level correlations between constituent motifs.58 Analyzing how

signaling or transcription factor dynamics are correlated with

the generation of motifs will reveal how this process is regulated

during development. Overall, by decomposing complex lineage

trees into their functional building blocks, lineage motifs should

help provide insight into longstanding questions in development

and evolution.

Limitations of the study
Because progenitor states are not directly observed in the da-

tasets analyzed here, we cannot make claims about the exact

dynamics that regulate how progenitors differentiate over

time to give rise to lineage motifs. Incomplete identification of

cell types due to the use of limited numbers of markers in the

experimental studies analyzed here could prevent discovery
824 Developmental Cell 59, 812–826, March 25, 2024
of more complex motifs. Finally, the largest limitation has to

do with the limited size of existing datasets. Although we

have identified motifs and anti-motifs in three different datasets

in this work, it is likely that not all fate correlations will recur with

high enough significance to be classified as a motif. Programs

with weaker fate correlations and datasets of limited size can

hinder motif identification, as explored in Figures S5D and

S5E. In the small retina datasets analyzed here, rare lineage

combinations could be falsely underrepresented (i.e., absent)

or overrepresented in the captured data due to limited sam-

pling size. Future work leveraging lineage recording systems

should allow the production of much larger spatially resolved

lineage tree datasets that could be analyzed with the ap-

proaches introduced here.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Rat retina lineage trees Gomes et al.38 https://doi.org/10.1242/dev.059683

Zebrafish retina lineage trees He et al.46 https://doi.org/10.1016/j.neuron.2012.06.033

Mouse blastocyst lineage trees Morris et al.49 https://doi.org/10.1073/pnas.0915063107

Mouse, rabbit, and monkey retina

cell type proportions

Masland2 https://doi.org/10.1167/iovs.10-7083

Chick retina cell type proportions Yamagata et al.51 https://doi.org/10.7554/eLife.63907

Software and algorithms

Python Python Software Foundation N/A

linmo (Python) This paper https://github.com/labowitz/linmo and https://doi.org/

10.22002/kn8yx-kmb24

Simulation and analysis code (Python) This paper https://labowitz.github.io/linmo/ and https://doi.org/

10.22002/kn8yx-kmb24
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Michael B. Elowitz

(melowitz@caltech.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d This paper analyzes existing, publicly available data. These accession numbers for the datasets are listed in the key re-

sources table.

d All code used in this study has been deposited at GitHub (https://github.com/labowitz/linmo) as well as the CaltechDATA

research repository (https://doi.org/10.22002/kn8yx-kmb24) and is publicly available as of the date of publication. DOIs are

listed in the key resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

This study involves the analysis of published datasets on zebrafish retina development,46 rat retina development,38 and mouse early

embryonic development.49 Belowwe provided details on the experimental models drawn directly from each of the published studies.

Animals
He et al.46 bred the UAS:Kaede and MAZe transgenic zebrafish lines at 26.5�C to obtain embryos, which were grown and imaged

from 32 to 72 hours postfertilization at 28.5�C. Phenylthiourea (PTU, 0.0003%) was applied at 8 hours postfertilization to delay

pigmentation, and MS-222 (0.04%) was applied prior to live imaging to anaesthetize the embryos. All animal work was approved

by the Local Ethical Review Committee at the University of Cambridge and performed under protocols from the UK Home Office li-

cense PPL 80/2198. The husbandry and housing of the animals and sex of the embryos was not provided in the published study.

Morris et al.49 crossed spontaneously ovulating C57BL/6xCBA female mice with CAG::GFP-GPI transgenic male mice and

collected eight-cell embryos in M2 medium containing BSA. The embryos were then grown in KSOM medium and imaged until

the embryos reached late-blastocyst stage (embryonic day 4.5). The husbandry and housing of the animals, sex of the embryos, cul-

ture temperature, institutional permission, and oversight information was not provided in the published study.
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Primary cell cultures
Gomes et al.38 harvested retinal cells from E20 Sprague Dawley rats. The authors filtered the cells twice in a 8 mm nylon mesh and

resuspended them in serum-free media with the following components: 1:1 mixture of DMEM-F12 medium with N2 supplement and

Neurobasal medium with B27 supplement, penicillin/streptomycin, NT-3 (10 ng/mL), BDNF (10 ng/mL), EGF (50 ng/mL), FGF-2

(10 ng/mL), insulin (20 mg/mL), N-acetyl-L-cystein (6.3 mg/mL), forskolin (25 mM), 8-(4-chlorophenylthio) adenosine 3’5’-cyclic mono-

phosphate (cpt-cAMP, 0.1 mM). The dissociated cells were left at 37�C in a CO2 incubator for a couple hours to settle, then imaged

until all progenitors had terminally differentiated (around 9-14 days total). During imaging, the cells were kept at 37�Cwith an 8%CO2,

12%O2 environment. The sex, authentication of the cells, institutional permission, and oversight information was not provided in the

published study.

METHOD DETAILS

Lineage tree resampling and motif identification
NEWICK-formatted lineage trees were first sorted to have doublet and quartet patterns arranged in alphabetical order according to

their cell type annotations. All patterns were then aligned in order of earliest to latest born cells. For example, before alignment, triplet

patterns could be present in the raw lineage tree data as ((X,X),X) or (X,(X,X)), and were therefore aligned to match the latter format in

all cases. A similar procedure was followed for higher-order patterns, like asymmetric quartets, quintets, sextets, and septets.

All cell types and cell type patterns were then enumerated and counted for the number of occurrences within the lineage trees. The

datasets were then appropriately resampled according to the type of motifs to be identified. For doublet motif identification, each cell

type in the lineage tree dataset was replaced by a random cell type drawing from a list of all cell types within the dataset. This pro-

cedure maintains tree topology and overall cell type proportions but eliminates fate correlations between related cells. Our results

were not sensitive to replacing with vs. without replacement. To detect larger motifs, it is necessary to control not only for overall

cell type frequencies but also for the frequencies of any ‘‘sub-patterns’’ within the pattern of interest. For example, a triplet pattern

comprising a sister cell doublet and their common cousin could appear over-represented solely because the sister doublet is itself a

motif. To account for this, the lineage treeswere resampled in amanner that preserves sub-pattern frequency, by drawing froma pool

of similar sub-patterns across all trees. Therefore, for triplet motif identification, each singlet and doublet in the lineage tree dataset

was respectively replaced by a random singlet or doublet drawing from a list of all singlets or doublets in the dataset. In this way, the

overall frequencies of singlets and doublets remains the same across the resampled dataset while eliminating fate correlations be-

tween particular singlets and doublets. For quartet motif identification, each doublet in the lineage tree dataset was replaced by a

random doublet drawing from a list of all doublets in the dataset. A similar procedure was followed for increasingly larger patterns.

The occurrences of each pattern were counted for each resampled dataset, then used to calculate an average number of occur-

rences and standard deviation across all resamples. The average and standard deviation were then used to calculate a z-score as

follows:

z =
x � x

s

where x is the observed count in the original set of lineage trees, x is the average count across all resamples, and s is the standard

deviation across all resamples.

For plotting, the expected count of each pattern was calculated by multiplying the marginal probabilities of observing each of the

two sub-patterns by the total number of that type of pattern across the entire dataset. Additionally, if the sub-patterns were not iden-

tical, the expected number was multiplied by two. For example, the expected number of the triplet (A,(B,C)) would be calculated as

P(A) * P((B,C)) * total number of triplets * 2, and the expected number of the quartet ((A,B),(A,B)) would be calculated as P((A,B)) *

P((A,B)) * total number of quartets. The null z-scores were calculated by repeating the same resampling procedure above for

randomly chosen resampled datasets.

Construction of synthetic lineage tree datasets
To generate the example lineage trees shown in Figure 2, lineage trees were simulated using a one-step model in which a progenitor

can self-renew or differentiate using probabilities of 10 or 90% respectively. For all differentiated cells, one of three possible fates

were assigned with equal probability: blue, green, or a committed progenitor. Finally, two cell divisions were simulated for all

committed progenitors, such that each gave rise to a triplet of (green, (green, blue)) with 100% probability. Cell divisions and fate

differentiation were repeatedly simulated for all progenitors present within the tree until all cells reached terminal fates.

To test the recursive nature and accuracy of LMA in Figures 3 and S1, synthetic lineage tree datasets were simulated using a

competence progression model or binary fate model of development. Each tree started as an ‘a’ or ‘i’ progenitor for each respective

model, and a cell division was simulated producing two descendant cells, whose fates were chosen probabilistically based on the

transition probabilities of the parental progenitor type. Cell divisions and fate differentiation were repeatedly simulated for all progen-

itors present within the tree until all cells reached terminal fates (A-F or A-H for each respective model).

To test LMA on lineage trees generated using an extrinsic model of development in Figure S3, synthetic lineage tree datasets were

generated by populating a grid with 61 x 61 progenitor cells. A cell division was simulated for a randomly chosen progenitor, produc-

ing two descendant cells. One of the descendent cells remains at the same position in the grid, while the other cell is randomly placed
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in the immediately adjacent up, down, left, or right position, shifting all other cells within the column or row in an outwards manner.

Fates were then chosen for each of the descendent cells probabilistically based on the transition probabilities as defined in Fig-

ure S3B. Cell divisions and fate differentiation were repeatedly simulated for all progenitors present within the grid in a similar manner

until all cells reached terminal fates. For the extrinsic model, P(A)* was calculated as (40 - 10nA) * SF, where nA is the number of neigh-

boring A cells with 4-connectivity, SF is 80 / ((40 - 10nA) + (40 - 10nB)), and nB is the number of neighboring B cells with 4-connectivity.

To test various dataset characteristics on motif identification, synthetic lineage tree datasets were generated by simulating self-

renewal and differentiation in a progenitor cell, using probabilities as defined in Figure S5A. To account for rod sister fate correlations,

each doublet of terminally differentiated cells was first assigned one fate based on the standard set of fate probabilities. If the as-

signed fate was indeed a rod cell, then the fate probability of the remaining cell within the terminal doublet was modified to be the

conditional probability being tested. Cell divisions and fate differentiation were repeatedly simulated for all progenitors present within

the tree until all cells reached terminal fates. This process was repeated in a similar manner to incorporate M€uller glia sister fate

correlations.

Simulation of cell type proportions with input motif matrices
Cell type proportions were first simulated using input motif matrices (Figure 7B) by choosing random frequencies for each motif and

taking sets of cell types that were of total size 100 cells (for X0 and X1) or 99 cells (for X2). For the motif transformation using the motifs

measured in the rat retina dataset, e3 was computed as z3 � X3y3 where z3 is the total number of A, B, andM cell types in the dataset,

X3 is the empirical motif matrix based on the observed motifs, [((B,(A,B)), (A,A), (A,B), and (B,M)], and y3 is the number of occurrences

of each motif within the dataset (Figure S7A). Similarly, e4 was computed as z4 � X4y4 where z4 is the total number of A, B, and M cell

types in the dataset, X4 is the empirical motif matrix based on the observedmotifs, [((B,(A,B)), (A,B), and (B,M)], and y4 is the number of

occurrences of each motif within the dataset (Figure S7B). The total number of 113 A, B, and M cells across the entire dataset was

used for
P

iðz3Þi and
P

iðz4Þi . R cells were omitted from this analysis because no rat retinal motifs contained R cells.

QUANTIFICATION AND STATISTICAL ANALYSIS

For resampling lineage trees, 104 datasets were used to generate counts for each pattern across the resamples that resemble a

normal distribution. For the motif transformation, 105 datasets were generated to sample the possible space of cell type proportions.

The p-value for all patterns in the paper was calculated by (1) determining whether the observed count is higher or lower than the

average across the resamples (the null distribution), (2) counting the number of resamples that have counts at least as extreme as

the observed counts, and (3) dividing this by the total number of resamples to obtain a one-sided p-value. P-values were adjusted

to the total number of patterns analyzed using the Benjamini/Hochberg correction with false discovery rate (a) = 0.05 and a two-stage

linear step-up procedure with estimation of the number of true hypotheses.39,40

ADDITIONAL RESOURCES

GitHub repository: https://github.com/labowitz/linmo

linmo package documentation: https://labowitz.github.io/linmo/
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